Exercise 1.64

A copper refinery produces a copper ingot weighing 150 lb . If the copper is drawn into wire whose diameter is 7.50 mm , how many feet of copper can be obtained from the ingot? The density of copper is $8.94 \mathrm{~g} / \mathrm{cm}^{3}$. (Assume that the wire is a cylinder whose volume $V=\pi r^{2} h$, where r is its radius and h is its height or length.)

Solution

Solve the volume equation for the length.

$$
h=\frac{V}{\pi r^{2}}
$$

The volume is mass divided by density.

$$
h=\frac{\left(\frac{m}{\rho}\right)}{\pi r^{2}}
$$

Now plug in the numbers, making sure the units cancel appropriately.

$$
\begin{aligned}
h & =\frac{m}{\pi r^{2} \rho} \\
& =\frac{150 \mathrm{lb}}{\pi\left(\frac{7.50 \mathrm{~mm}}{2}\right)^{2}\left(8.94 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\right)} \\
& =\frac{150 \mathrm{M} \times \frac{453.59 \mathrm{~g}}{1 \mathrm{~Tb}}}{\pi\left(\frac{7.50 \mathrm{~mm}}{2} \times \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}}\right)^{2}\left(8.94 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\right)} \\
& =\frac{150 \times 453.59}{\pi\left(\frac{7.50}{2} \times \frac{1}{10}\right)^{2} \times 8.94 \frac{\not \mathrm{~F}^{\mathrm{cm}}}{\mathrm{~cm}}} \\
& =\frac{150 \times 453.59 \mathrm{~cm}}{\pi\left(\frac{7.50}{2} \times \frac{1}{10}\right)^{2} \times 8.94} \times \frac{1 \text { inq }}{2.54 \mathrm{~cm}} \times \frac{1 \mathrm{ft}}{12 \text { in }} \\
& \approx\left\{\begin{array}{l}
5.7 \times 10^{2} \mathrm{ft} \quad \text { if the uncertainty in } 150 \mathrm{lb} \text { is in the tens place } \\
5.65 \times 10^{2} \mathrm{ft} \quad \text { if the uncertainty in } 150 \mathrm{lb} \text { is in the ones place }
\end{array}\right.
\end{aligned}
$$

